Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add filters

Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.07.481737

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has substantially impacted human health globally. Spike-specific antibody response plays a major role in protection against SARS-CoV-2. Here, we demonstrated that acute SARS-CoV-2 infection elicits rapid and robust spike-binding and ACE2-blocking antibody responses, which wane approximately 11 months after infection. Serological responses were found to be correlated with the frequency of spike-specific memory B cell responses to natural infections. Further, significantly higher spike-binding, ACE2-blocking, and memory B cell responses were detected in patients with fever and pneumonia. Spike-specific antibody responses were found to be greatly affected by spike mutations in emerging variants, especially the Beta and Omicron variants. These results warrant continued surveillance of spike-specific antibody responses to natural infections and highlight the importance of maintaining functional anti-spike antibodies through immunization.


Subject(s)
Coronavirus Infections , Fever , Pneumonia , COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.26.22271364

ABSTRACT

Background Rapid development and deployment of vaccine is crucial to control the continuously evolving COVID-19 pandemic. Placebo-controlled phase 3 efficacy trial is still standard for authorizing vaccines in majority of the world. However, due to lack of cases or participants in parts of the world, this has not always been feasible. An alternative to efficacy trial is immunobridging, in which the immune response or correlates of protection of a vaccine candidate is compared against an approved vaccine. Here we describe a case study where our candidate vaccine, MVC-COV1901, has been granted for emergency use authorization (EUA) locally based on the non-inferiority immunobridging process. Methods The per protocol immunogenicity (PPI) subset from the MVC-COV1901 phase 2 trial was used for this study and consisted of 903 subjects who have received two doses of MVC-COV1901 as scheduled in the clinical trial. The comparator set of population consisted of 200 subjects of [≥] 20 years of age who were generally healthy, and have received two doses of AstraZeneca ChAdOx nCOV-19 (AZD1222) recruited from Taoyuan General Hospital, Ministry of Health and Welfare. Results MVC-COV1901 was shown to have a geometric mean titer (GMT) ratio lower bound 95% confidence internal (CI) of 3.4 against the comparator vaccine and a seroconversion rate of 95.5% at the 95% CI lower bound, which both exceeded the criteria set by the Taiwan regulatory authority for EUA approval. These results supported the EUA approval of MVC-COV1901 by the Taiwanese regulatory authority in July 2021. Following the consensus of the International Coalition of Medicines Regulatory Authorities (ICMRA), countries from the Access Consortium has recently adopted the use of immunobridging studies as acceptable for authorizing COVID-19 vaccines in lieu of efficacy data. Conclusion The data presented in the study showed that it is reasonably likely that the vaccine efficacy of MVC-COV1901 is similar or superior to that of AZ. Data could be used in support of further vaccine development and regulatory approval.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.10.21267574

ABSTRACT

We report the interim safety and immunogenicity results in participants administrated with a booster dose of protein subunit vaccine MVC-COV1901 at 12 or 24 weeks after two doses of AZD1222 (ChAdOx1 nCoV-19). In subjects fully vaccinated with two doses of AZD1222, waning antibody immunity was apparent within six months of the second dose of AZD1222. At one month after the MVC-COV1901 booster dose, anti-SARS-CoV-2 spike IgG antibody titers and neutralizing antibody titers were 14- and 8.6-fold increased, respectively, when compared to the titer levels on the day of the booster dose. These interim results support the use of MVC-COV1901 as a heterologous booster for individuals vaccinated with AZD1222.

4.
Cathrine Axfors; Andreas M Schmitt; Perrine Janiaud; Janneke van 't Hooft; Sherief Abd-Elsalam; Ehab F Abdo; Benjamin S Abella; Javed Akram; Ravi K Amaravadi; Derek C Angus; Yaseen M Arabi; Shehnoor Azhar; Lindsey R Baden; Arthur W Baker; Leila Belkhir; Thomas Benfield; Marvin A H Berrevoets; Cheng-Pin Chen; Tsung-Chia Chen; Shu-Hsing Cheng; Chien-Yu Cheng; Wei-Sheng Chung; Yehuda Z Cohen; Lisa N Cowan; Olav Dalgard; Fernando F de Almeida e Val; Marcus V G de Lacerda; Gisely C de Melo; Lennie Derde; Vincent Dubee; Anissa Elfakir; Anthony C Gordon; Carmen M Hernandez-Cardenas; Thomas Hills; Andy I M Hoepelman; Yi-Wen Huang; Bruno Igau; Ronghua Jin; Felipe Jurado-Camacho; Khalid S Khan; Peter G Kremsner; Benno Kreuels; Cheng-Yu Kuo; Thuy Le; Yi-Chun Lin; Wu-Pu Lin; Tse-Hung Lin; Magnus Nakrem Lyngbakken; Colin McArthur; Bryan McVerry; Patricia Meza-Meneses; Wuelton M Monteiro; Susan C Morpeth; Ahmad Mourad; Mark J Mulligan; Srinivas Murthy; Susanna Naggie; Shanti Narayanasamy; Alistair Nichol; Lewis A Novack; Sean M O'Brien; Nwora Lance Okeke; Lena Perez; Rogelio Perez-Padilla; Laurent Perrin; Arantxa Remigio-Luna; Norma E Rivera-Martinez; Frank W Rockhold; Sebastian Rodriguez-Llamazares; Robert Rolfe; Rossana Rosa; Helge Rosjo; Vanderson S Sampaio; Todd B Seto; Muhammad Shehzad; Shaimaa Soliman; Jason E Stout; Ireri Thirion-Romero; Andrea B Troxel; Ting-Yu Tseng; Nicholas A Turner; Robert J Ulrich; Stephen R Walsh; Steve A Webb; Jesper M Weehuizen; Maria Velinova; Hon-Lai Wong; Rebekah Wrenn; Fernando G Zampieri; Wu Zhong; David Moher; Steven N Goodman; John P A Ioannidis; Lars G Hemkens.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.16.20194571

ABSTRACT

Background: Substantial COVID-19 research investment has been allocated to randomized clinical trials (RCTs) on hydroxychloroquine/chloroquine, which currently face recruitment challenges or early discontinuation. We aimed to estimate the effects of hydroxychloroquine and chloroquine on survival in COVID-19 from all currently available RCT evidence, published and unpublished. Methods: Rapid meta-analysis of ongoing, completed, or discontinued RCTs on hydroxychloroquine or chloroquine treatment for any COVID-19 patients (protocol: https://osf.io/QESV4/). We systematically identified published and unpublished RCTs by September 14, 2020 (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, PubMed, Cochrane COVID-19 registry). All-cause mortality was extracted (publications/preprints) or requested from investigators and combined in random-effects meta-analyses, calculating odds ratios (ORs) with 95% confidence intervals (CIs), separately for hydroxychloroquine/chloroquine. Prespecified subgroup analyses included patient setting, diagnostic confirmation, control type, and publication status. Results: Sixty-two trials were potentially eligible. We included 16 unpublished trials (1596 patients) and 10 publications/preprints (6317 patients). The combined summary OR on all-cause mortality for hydroxychloroquine was 1.08 (95%CI: 0.99, 1.18; I-square=0%; 24 trials; 7659 patients) and for chloroquine 1.77 (95%CI: 0.15, 21.13, I-square=0%; 4 trials; 307 patients). We identified no subgroup effects. Conclusions: We found no benefit of hydroxychloroquine or chloroquine on the survival of COVID-19 patients. For hydroxychloroquine, the confidence interval is compatible with increased mortality (OR 1.18) or negligibly reduced mortality (OR 0.99). Findings have unclear generalizability to outpatients, children, pregnant women, and people with comorbidities.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.267526

ABSTRACT

Plasmablast responses and derived IgG monoclonal antibodies (MAbs) have been analysed in three COVID-19 patients. An average of 13.7% and 13.0% of plasmablast-derived IgG MAbs were reactive with virus spike glycoprotein or nucleocapsid, respectively. Of thirty-two antibodies specific for the spike glycoprotein, ten recognised the receptor-binding domain (RBD), thirteen were specific for non-RBD epitopes on the S1 subunit, and nine recognised the S2 subunit. A subset of anti-spike antibodies (10 of 32) cross-reacted with other betacoronaviruses tested, five targeted the non-RBD S1, and five targeted the S2 subunit. Of the plasmablast-derived MAbs reacting with nucleocapsid, over half of them (19 of 35) cross-reacted with other betacoronaviruses tested. The cross-reactive plasmablast-derived antibodies harboured extensive somatic mutations, indicative of an expansion of memory B cells upon SARS-CoV-2 infection. We identified 14 of 32 anti-spike MAbs that neutralised SARS-CoV-2 in independent assays at [≤] 133 nM (20 g/ml) (five of 10 anti-RBD, three of 13 anti-non-RBD S1 subunit, six of nine anti-S2 subunit). Six of 10 anti-RBD MAbs showed evidence of blockade of ACE2 binding to RBD, and five of six of these were neutralising. Non-competing pairs of neutralising antibodies were identified, which offer potential templates for the development of prophylactic and therapeutic agents against SARS-CoV-2.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.272880

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of Coronavirus Disease 2019 (COVID-19), a pandemic that has claimed over 700,000 human lives. The only SARS-CoV-2 antiviral, for emergency use, is remdesivir, targeting the viral polymerase complex. PF-00835231 is a pre-clinical lead compound with an alternate target, the main SARS-CoV-2 protease 3CLpro (Mpro). Here, we perform a comparative analysis of PF-00835231 and remdesivir in A549+ACE2 cells, using isolates of two major SARS-CoV-2 clades. PF-00835231 is antiviral for both clades, and, in this assay, statistically more potent than remdesivir. A time-of-drug-addition approach delineates the timing of early SARS-CoV-2 life cycle steps and validates PF-00835231s time of action. Both PF-00835231 and remdesivir potently inhibit SARS-CoV-2 in human polarized airway epithelial cultures. Thus, our study provides in vitro evidence for the potential of PF-00835231 as an effective antiviral for SARS-CoV-2, addresses concerns from non-human in vitro models, and supports further studies with this compound.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.270306

ABSTRACT

Until now, no approved effective vaccine and antiviral therapeutic are available for treatment or prevention of SARS-coronavirus 2 (SCoV-2) virus infection. In this study, we established a SCoV-2 Spike glycoprotein (SP), including a SP mutant D614G, pseudotyped HIV-1-based vector system and tested their ability to infect ACE2-expressing cells. This study revealed that a C-terminal 17 amino acid deletion in SCoV-2 SP significantly increases the incorporation of SP into the pseudotyped viruses and enhanced its infectivity, which may be helpful in the design of SCoV2-SP-based vaccine strategies. Moreover, based on this system, we have demonstrated that an aqueous extract from the Chinese herb Prunella vulgaris (CHPV) and a compound, suramin, displayed potent inhibitory effects on both wild type and mutant (G614) SCoV-2 SP pseudotyped virus (SCoV-2-SP-PVs)-mediated infection. The 50% inhibitory concentration (IC50) for CHPV and suramin on SCoV-2-SP-PVs are 30, and 40 g/ml, respectively. To define the mechanisms of their actions, we demonstrated that both CHPV and suramin are able to directly interrupt SCoV-2-SP binding to its receptor ACE2 and block the viral entry step. Importantly, our results also showed that CHPV or suramin can efficiently reduce levels of cytopathic effect caused by SARS-CoV-2 virus (hCoV-19/Canada/ON-VIDO-01/2020) infection in Vero cells. Furthermore, our results demonstrated that the combination of CHPV/suramin with an anti-SARS-CoV-2 neutralizing antibody mediated more potent blocking effect against SCoV2-SP-PVs. Overall, this study provides evidence that CHPV and suramin has anti-SARS-CoV-2 activity and may be developed as a novel antiviral approach against SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections , COVID-19 , Ichthyosis Vulgaris
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.271684

ABSTRACT

We assessed the infectivity, replication dynamics and cytopathogenicity of the first Swedish isolate of SARS-CoV-2 in six different cell lines of human origin and compared their growth characteristics. High replication kinetics in absence of cytopathic-effect observed in many cell lines provided important clues on SARS-CoV-2 pathogenesis.

9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.27.271130

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates throughout human airways. The polarized human airway epithelium (HAE) cultured at an airway-liquid interface (HAE-ALI) is an in vitro model mimicking the in vivo human mucociliary airway epithelium and supports the replication of SARS-CoV-2. However, previous studies only characterized short-period SARS-CoV-2 infection in HAE. In this study, continuously monitoring the SARS-CoV-2 infection in HAE-ALI cultures for a long period of up to 51 days revealed that SARS-CoV-2 infection was long lasting with recurrent replication peaks appearing between an interval of approximately 7-10 days, which was consistent in all the tested HAE-ALI cultures derived from 4 lung bronchi of independent donors. We also identified that SARS-CoV-2 does not infect HAE from the basolateral side, and the dominant SARS-CoV-2 permissive epithelial cells are ciliated cells and goblet cells, whereas virus replication in basal cells and club cells was not detectable. Notably, virus infection immediately damaged the HAE, which is demonstrated by dispersed Zonula occludens-1 (ZO-1) expression without clear tight junctions and partial loss of cilia. Importantly, we identified that SARS-CoV-2 productive infection of HAE requires a high viral load of 2.5 x 105 virions per cm2 of epithelium. Thus, our studies highlight the importance of a high viral load and that epithelial renewal initiates and maintains a recurrent infection of HAE with SARS-CoV-2.


Subject(s)
COVID-19 , Tumor Virus Infections
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.271957

ABSTRACT

A consensus virtual screening protocol has been applied to ca. 2000 approved drugs to seek inhibitors of the main protease (Mpro) of SARS-CoV-2, the virus responsible for COVID-19. 42 drugs emerged as top candidates, and after visual analyses of the predicted structures of their complexes with Mpro, 17 were chosen for evaluation in a kinetic assay for Mpro inhibition. Remarkably 14 of the compounds at 100-M concentration were found to reduce the enzymatic activity and 5 provided IC50 values below 40 M: manidipine (4.8 M), boceprevir (5.4 M), lercanidipine (16.2 M), bedaquiline (18.7 M), and efonidipine (38.5 M). Structural analyses reveal a common cloverleaf pattern for the binding of the active compounds to the P1, P1, and P2 pockets of Mpro. Further study of the most active compounds in the context of COVID-19 therapy is warranted, while all of the active compounds may provide a foundation for lead optimization to deliver valuable chemotherapeutics to combat the pandemic.


Subject(s)
COVID-19
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.08.20148841

ABSTRACT

Objective In this study, we evaluated the efficacy of hydroxychloroquine (HCQ) against coronavirus disease 2019 (COVID-19) via a randomized controlled trial (RCT) and a retrospective study. Methods Subjects admitted to 11 designated public hospitals in Taiwan between April 1 and May 31, 2020, with COVID-19 diagnosis confirmed by pharyngeal real-time RT-PCR for SARS-CoV-2, were randomized at a 2:1 ratio and stratified by mild or moderate illness. HCQ 400 mg twice for 1 d and HCQ 200 mg twice daily for 6 days were administered. Both study group and controlled group received standard of care (SOC). Pharyngeal swabs and sputum were collected every other day. The proportion and time to negative viral PCR were assessed on day 14. In the retrospective study, medical records were reviewed for patients admitted before March 31, 2020. Results There were 33 and 37 cases in the RCT and retrospective study, respectively. In the RCT, the median times to negative rRT-PCR from randomization to hospital day 14 were 5 days (95% CI; 1-9 days) and 10 days (95% CI; 2-12 days) for the HCQ and SOC groups, respectively (p = 0.40). On day 14, 81.0% (17/21) and 75.0% (9/12) of the subjects in the HCQ and SOC groups, respectively, had undetected virus (p = 0.36). In the retrospective study, 12 (42.9%) in the HCQ group and 5 (55.6%) in the control group had negative rRT-PCR results on hospital day 14 (p = 0.70). Conclusions Neither study demonstrated that HCQ shortened viral shedding in mild to moderate COVID-19 subjects.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.12.148387

ABSTRACT

The COVID-19 pandemic has had unprecedented health and economic impact, but currently there are no approved therapies. We have isolated an antibody, EY6A, from a late-stage COVID-19 patient and show it neutralises SARS-CoV-2 and cross-reacts with SARS-CoV-1. EY6A Fab binds tightly (KD of 2 nM) the receptor binding domain (RBD) of the viral Spike glycoprotein and a 2.6[A] crystal structure of an RBD/EY6A Fab complex identifies the highly conserved epitope, away from the ACE2 receptor binding site. Residues of this epitope are key to stabilising the pre-fusion Spike. Cryo-EM analyses of the pre-fusion Spike incubated with EY6A Fab reveal a complex of the intact trimer with three Fabs bound and two further multimeric forms comprising destabilized Spike attached to Fab. EY6A binds what is probably a major neutralising epitope, making it a candidate therapeutic for COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL